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SUMMARY 

In this paper we describe finite element computations of the free-surface flow of a viscous fluid down an 
undulating inclined plane. The technique developed here employs an orthogonal mapping that is computed 
along with the velocity and pressure. This is allied to a technique to compute symbolically the Jacobian and 
other derivatives required for numerical continuation methods. The solutions obtained are compared with 
laboratory experiments and finite element computations reported by Pritchard and co-workers. The finite 
element computational method used by these authors employs spines to represent the free surface. An 
excellent agreement is shown to exist between the new computations and the laboratory experiments, and 
with the numerical solutions of Pritchard and co-workers. 
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1. INTRODUCTION 

In this paper we consider the free-surface flow of a Newtonian fluid down a smoothly perturbed 
inclined plane. The flows considered here have been posed by Pritchard, et al.' as a set of test 
problems for quantifying the performance of methods for solving viscous free-surface flows. 
Pritchard et al. describe the experimental apparatus and their technique for measuring free- 
surface profiles in the laboratory. They report quantitative comparisons between the laboratory 
flows and large-scale numerical computations using the FIDAP finite-element code.' This code 
uses a spine representation of the free-suface, a method which will be described briefly below. 
Readers interested in a full description of the experiments and the FIDAP computations are 
referred to Reference 1. The experiments and numerical results of Pritchard et al.' will be 
compared with those obtained using a different numerical technique described in detail below. 
This technique employs an orthogonal co-ordinate transformation of the fluid region, and is 
based on the ENTWIFE finite-element pa~kage .~  

Our aim is to incorporate a co-ordinate transformation scheme within a finite element code 
(ENTWIFE) that is capable of performing numerical continuation and numerical computations 
of singularities up to co-dimension two by extended system techniques. A discussion of continua- 
tion methods can be found in Reference 4 and descriptions of extended systems for computing 
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higher-order singularities can be found in a series of papers by Jepson and S p e n ~ e ' . ~  and Jepson 
et al.' A preprocessing technique which performs symbolic computations was used to provide the 
FORTRAN subroutines to evaluate the Jacobian and high-order derivatives of the non-linear 
discretized equations. This work represents the first non-trivial test of the synthesis of these three 
techniques. 

Viscous free-surface problems, such as the motion of a bubble in a fluid, the dynamics of liquid 
bridges and menisci, and the motion of thin fluid films over inclined surfaces, provide difficult 
computational fluid dynamics problems which are relevant to a variety of industrial processes, 
such as the growth of crystals for the electronics industry, the coating of photographic films and 
magnetic tape, and heat transfer devices. For a review, see Reference 8. 

One numerical approach to the solution of free-boundary problems is to define the free-surface 
by its position along a predetermined array of spines (see e.g. References 9 and 10). The vertices of 
the finite elements are constrained to lie on the spines, ensuring that the mesh does not become 
badly distorted during the iterative process. This method has been employed successfully by 
Scriven and co-workersg-" for computing coating flows. It has the disadvantage that it requires 
a priori an intelligent guess of the solution so that the spines may be arranged to capture best the 
shape of the free surface, or requires an elaborate remeshing procedure such as that described by 
Christolodou and Scriven." The method will fail if the free surface becomes parallel to the spines 
and will be poorly conditioned if the free surface becomes nearly parallel to the spines. A study of 
this method and its application to the free-surface flow studied herein is presented by Pritchard 
et al.' 

An alternative approach is to employ a co-ordinate transformation of the unknown fluid 
region to a known region, say the unit box or unit circle. The free-surface problem may then be 
posed as the following fixed-point iterative scheme. At each iteration one of the three interfacial 
boundary conditions (e.g. the normal-stress condition) is relaxed, the free-surface is considered 
fixed and the interior flow is computed on the mesh generated for the current region. The 
remaining boundary condition is then invoked and the associated residuals used to update the 
co-ordinate transformation. These two steps are then repeated until convergence. For a finite 
difference implementation, see References 12 and 13. Such a procedure becomes very complicated 
for systems in which there is more than one free surface. Further, it must often be severely 
under-relaxed in order to be stable and since it is fixed-point iteration, it is at best only linearly 
convergent. For a discussion of the properties of this method, see Reference 14. 

Alternatively, the co-ordinate transformation (the mesh) and flow variables may be computed 
simultaneously, employing a Newton iterative technique to solve the full system of algebraic 
equations that arise from both the governing equations and co-ordinate transformation. For 
a finite difference implementation, see Reference 15. In the ENTWIFE implementation, continua- 
tion and numerical singularity techniques may be employed on the full non-linear system in order 
to compute both regular and, more importantly, singular points, at which the flow may change 
stability. Each Newton iteration is computationally more expensive than a single iteration of the 
fixed-point iteration, but when continuation is used to provide a good initial guess and an 
efficient direct frontal solver (ideally, one which takes advantage of the structure of the stiffness 
matrix) is employed, the quadratic convergence of the Newton scheme quickly offsets this extra 
expense. 

For both the fixed-point or Newton schemes, the computation of the co-ordinate transforma- 
tion is a key issue. The mesh must be well-distributed across the fluid region in the physical 
domain and, ideally, concentrated in regions where there are fine-grained flow structures. Mesh 
geneation is an area that has been well-studied over the last 20 years, and is the subject of many 
papers. It has been the subject of much research in the context of aerodynamics, in which 
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body-fitted meshes are required in order to compute the air flow about aerodynamic control 
surfaces. This area is reviewed by Eiseman ' and Thompson. ' Such meshes may be orthogonal 
or non-orthogonal, but in either case they may be computed by solving a pair of elliptic partial 
differential equations for thz underlying co-ordinate transformation. Orthogonal meshes are 
desirable because they considerably simplify the governing equations to be solved in the reference 
domain. For example, the Laplacian operator is invariant under a conformal transformation. The 
complexity of the governing equations is an important issue when Newton iteration and 
numerical singularity techniques are to be employed since they require not only the Jacobian but 
also the higher-order derivatives (typically, up to third order) for the characterization of singular 
points. The correct encoding of these derivatives is a laborious and error-prone exercise. We used 
REDUCE'* to symbolically compute the Jacobian and write the relevant FORTRAN state- 
ments required by ENTWIFE. Orthogonal transformations such as those used in this study are 
known to create meshes which are subject to a crowding phenomena in the vicinity of a reentrant 
corner and which penetrate a notch only weakly. These problems arise due to the development of 
a singularity in the transformation. This has been vividly demonstrated by Menikoff and 
Zemach'' in the particular case of conformal mapping. This problem may be mitigated to some 
extent by dynamic re-gridding or re-parametrizing the transformed domain. 

An alternative approach to mesh generation involves the use of algebraic mappings to define 
the relation between the physical space and the transformed space. Because the mapping is 
prescribed relatively simply, the crowding phenomena can be easily overcome, but with the 
disadvantage that the governing equations in the transformed domain become highly complex. 
Brown and co-workers2'- 2' have successfully incorporated such non-orthogonal mappings 
within a global Newton scheme, which they have applied to the study of solidification problems. 

Another way to overcome this difficulty, which is the subject of much recent research, is to 
construct a functional of the co-ordinate transformation, chosen such that its minimization offsets 
the desirable quality of orthogonality against the undesirable quality of crowding. 22 In this 
method the corresponding Euler-Lagrange equations are solved numerically to yield meshes that 
satisfactorily cover even the most distorted domains. However, in some situations the mapping 
equations may change from elliptic to hyperbolic type, which results in a breakdown of the 
method. More recently, Christodoulou and Scrivenz3 have utilized a different functional that 
overcomes this difficulty. 

In this paper we employ an orthogonal grid transformation technique to the problem of flow 
down an undulating inclined surface. Our main purpose is to quantitatively compare this 
technique against the careful laboratory experiments and numerical computations of Pritchard 
et al.' We show that excellent agreement is obtained. In Section 2 we describe the physical 
problem and present the governing equations. In Section 3 we describe the orthogonal grid 
transformation technique and outline its implementation in the finite element package 
ENTWIFE. In the last section we present the results from this method and compare and contrast 
them with the results obtained by Pritchard et al.' using the FIDAP finite element package 
(which employs a spine representation of the free surface) and with their laboratory experiments. 

2. PROBLEM DESCRIPTION AND GOVERNING EQUATIONS 

We consider the flow of a viscous, incompressible, Newtonian fluid down an inclined channel of 
width w. There are two smooth bumps in the bed of the channel which extend across the width of 
the channel perpendicular to the side walls. We assume that this flow is essentially two- 
dimensional and define a Cartesian co-ordinate system rotated to be coincident with the mean 
slope of the inclined plane (-4.22" to the horizontal in the experimental situation). Let $2 denote 
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the flow domain with boundary dR. We divide the boundary dR into four disjoint parts, 
dR = rUurBurDurF, where Tu is the upstream end of our flow domain and is given by x =O, rB 
is the sloping surface of the perturbed inclined plane, which we describe by a known smooth 
function y = b(x), TD is the downstream end of the flow domain and is given by x = L, and rF is 
the free surface of the fluid. Abergel and B ~ n a ~ ~  show that the free-surface flow in this domain 
approaches the Poiseuille-Nusselt flow down an inclined plane exponentially, both upstream and 
downstream of the localized bump region. 

Let H be the height of this asymptotic flow which is determined from the volume flow rate per 
unit width Q, as (3Qv/~s ina)"~ ,  where v is the kinematic viscosity of the fluid, g is the 
acceleration due to gravity and a is the slope of the reference plane. We shall use the length scale 
H to characterize R and U = Q / H  to scale the velocity field. The dynamical equations governing 
the steady fluid motions in R are 

R (u - V)u = V - - G j, (1) 

div u = 0, (2) 

and 

where u(x) is the velocity at X E R ,  j is the unit vector directed vertically upwards, R = U H / v  
(=Q/v) is the Reynolds number and G = g H 2 / v U .  The stresj tensor a(x), which is scaled by 
p v U / H ,  where p is the fluid density, is given in Cartesian co-ordinates by 

a..= 1J - p d . . + ( u .  1J 1 .J  . + u .  1.1 .) 9 (3) 

where p(x) is the pressure at XER. For xETu and X E r D  we impose the Dirichlet conditions 

u(x)=gp(x), (4) 
where g,(x) = [ 3 y (2 - y), 0) is the far-field Poiseuille flow. For x E l-B we impose the no-slip 
condition 

u( x) = 0. (5 )  
On the free surface XETF, we impose a kinematical constraint which, for steady flows, is that the 
velocity field at the free surface be tangential to the surface itself, i.e. 

u(x) - n=O, (6) 
where n is the local (outward) normal to the surface. The normal stress along rF must be balanced 
by surface tension effects as 

T 

where K is the curvature of the surface, reckoned positive when the radius of curvature is directed 
into R, and T is the surface tension. We shall define the non-dimensional surface tension 
parameter as S = T/pv U. Further, we need to ensure that the tangential stress at the free surface is 
zero, i.e. for xET, 

(Ti j ti = 0. (8) 
This arises as the natural boundary condition upon integrating the weak form of the 
Navier-Stokes equations by parts if the stress divergence form is employed (see e.g. Reference 25, 
p. 61). 
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3. ORTHOGONAL MAPPING METHOD 

In this section we develop an orthogonal mapping technique to solve the free-boundary problem 
described in the previous section. The idea is to construct an orthogonal mapping 
[y?(x, y), (b(x,  y ) ]  from the four-sided physical domain Q, onto the unit square in the transformed 
domain Q', such that the level curves of + ( x ,  y) and (b(x,  y) are everywhere orthogonal, and the 
boundaries TU, rB, TD and rp are mapped onto the sides of the unit square, $=O, 4=0, $= 1 
and (b = 1, respectively. The system of partial differential equations and the associated boundary 
conditions governing the behaviour in the physical domain are then recast with $ and (b as the 
independent variables. The construction of an orthogonal transformation of a known 
fixed domain may be achieved in some cases by a conformal mapping, e.g. the use of the 
Schwarz-Christoffel mapping of a polygon. However, such a procedure does not, in general, 
permit the boundaries of a four-sided region to be mapped onto the corresponding boundaries of 
the unit square 0'. The governing equations are, therefore, supplemented with additional partial 
differential equations and boundary conditions describing the orthogonal transformation, i.e. 
relating the Cartesian co-ordinates ( x ,  y )  to $ and 4, and this combined system is then solved 
using a conventional finite element approach. As discussed in Section 1, there exists a considerable 
literature on boundary-fitted co-ordinate schemes. We have chosen the simplest of these, solving 
the generalized Cauchy-Riemann equations for the mapping. Local mesh refinement is achieved 
by 'patching' subdomains, defined on the reference domain, together as required. We derive the 
mapping equations in what we hope is a straightforward manner, based on our requirement of 
orthogonality. Necessarily, we have obtained the same mapping equations as presented pre- 
viously by a number of authors (e.g. Reference 12). 

To proceed, we first impose the condition that the co-ordinate transformation be orthogonal, in 
which case 

V$.V(b=O for all ( x ,  ~ ) E Q ,  (9) 

which has the general solution 
*X = @ y ,  

* y =  - 2 4 x 9  (1 1) 

where A depends on ( x ,  y) [or, equivalently, ($, ( b ) ] .  We now exchange the independent and 
dependent variables, making use of the following results: 

$ x = J  -'y+, rc/ Y = -1 J - '  x + ,  ( b x = - J - ' y  *, ( b r = J - l x * ,  (12) 

where 

is the Jacobian of the transformation, in order to obtain 

These may be rearranged to give 
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which provide two elliptic partial differential equations for ( x ,  y )  on R’, given A. We require that 
il takes a constant value in R’ and achieve this by solving 

(18) v2n(lC/, 4)=0 for all (lC/, 4 ) e n l ,  

with boundary conditions 

(19) 
a1 
an  
-=0 for ($, 4)~dQ’.  

We determine the constant value by invoking the orthogonality conditions (14) and (15) at the 
centre of the transformed domain R’, i.e. 

Y + + x + = 4 x * - Y * )  at ( $ 9  4)=(499. (20) 

The sum of equations (14) and (15) is used to ensure that equation (20) is not singular when x ,  or 
y, is zero. We note that alternative ways of specifying the function 2 are possible (see, for example, 
References 26-28 and 12) and that our procedure may not be the most efficient. It was chosen so 
that the mapping equations could be treated as simply another pair of partial differential 
equations to be discretized and solved using our finite element routines, thus avoiding the need to 
treat these equations in a special manner. 

The boundary conditions on x ( $ ,  4 )  and y ( $ ,  4) are derived from the shape of the fixed 
boundaries of the computational domain R, by requiring orthogonality at the boundaries, and 
from the kinematic boundary condition along the free surface. For equations (16) and (17) they 
are, respectively, 

x = o ,  y$=O on$=O, (21) 

x+ = - AY*, y = b ( x )  on 4=0, (22) 

x = L ,  y,=O o n $ = l ,  (23) 

x+= --ily$, -uy*+ux ,=O on 4=1.  (24) 

y =  1 at ($, 4)=(0, 1) and (1, 1). (25) 

Finally, we pin the upstream and downstream free-surface positions by imposing 

Thus, we are required to solve the Navier-Stokes equations (1) and (2) along with the 
transformation equations (16)-(18) for u, p ,  x ,  y and il subject to boundary conditions (4), (3, (7) 
and (8) on the flow variabls and (19)-(25) on the transformation. 

Certain aspects of how best to impose boundary conditions for free-surface problems remain 
open mathematical issues (see e.g. Reference 29). Since we impose both the free-surface height and 
the velocity components at the upstream and downstream boundaries, the kinematic boundary 
condition will not be satisfied there unless the free-surface upstream and downstream is flat. 
(Pritchard et al.” suggest imposing a tangential velocity at both boundaries of arbitrary shape 
and of a size required to satisfy the kinematic condition.) Fortunately, such an incompatibility 
never arose. Abegel and BonaZ4 show that, exponentially, the flow approaches one in which the 
free surface is parallel to the bed; and the computations were observed to be robust with minor 
variations in the position of the upstream and downstream boundaries. Moreover, the compari- 
sons reported in the next section suggest that our choices of these and other boundary conditions 
are satisfactory. 
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A weak form of the above system of partial differential equations is obtained by applying the 
standard Galerkin approach. In view of the free-surface conditions (7) and (8), we have expressed 
the viscous contribution to the momentum equation (1) in the form given by (3). The natural 
boundary condition arising in the resulting weak formulation is the prescription of the shear 
stress on the boundary (see Reference 25, p. 61). The weak form of the momentum equations 
developed below has been derived previously by both Ruschak3' and Kruyt et d3' 

First, for the transformation variables x ( $ ,  4), y(J/ ,  4) and A($, 4) we have 

( A x & , ~ + A - ' x + t 1 , 4 )  dl / rd4- j  + = O  t1Y$dl/r+j += 1 tIYJIdll/=o> 
In, 

(26) 

(27) 

where tl(J/, 4), t2(J/, 4) and x ( + ,  4) are suitable test functions for x ( $ ,  +), y($, 4) and A($, 4), 
respectively. For the velocity field u[x(l /r ,  4), y($, 4)], we have 

where C l  [ x ( $ ,  4), y($, 4)] and C 2 [ x ( J / ,  4), y(J / ,  4)] are suitable test functions for the velocity 
components u [  x( J/, 4), y( l/r, 4)] and D [ x ( J / ,  +), y( I), +)I, respectively. We use the definition of 
the stress tensor [equation (3)] and integrate by parts. Boundary conditions (4) and (5) require 
that both velocity test functions C i ,  i =  1,2 be zero on Tv, TD and re. Using equations (7) and (8) 
along rF we have 

Ci d R = j r F  SicniCi ds- In oij 

Since 
dri 

m.=--, ' ds 

we have 

Integrating by parts and noting that the basis functions for the both velocity components vanish 
at the two ends of the free surface, 

In terms of integrals over the transformed domain, 

n 
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where the expressions appearing in the first integrand must, of course, be written in terms of the 
independent variables ($, 4). These are complicated expressions and are not given here. The weak 
form of the continuity equation, used to solve for the pressure field, is I*, c(u,Yb-u,Y,) +(v,x4- v+x,)l4 d$ d 4  =o, (30) 

where q( $, 4) is a suitable test function for the pressure. The remaining boundary conditions are 
Dirichlet and were implemented by ‘overwriting the boundary conditions’ in the standard way. 

A finite element discretization was used to solve the above weak formulation. The computa- 
tions were performed using rectangular elements with biquadratic basis functions for the velocity 
fieid u($, 4), the co-ordinates x($, 4 )  and y($, 4), and for A($, 4). Discontinuous piecewise 
linear basis functions were used for the pressure. The resulting non-linear algebraic system was 
solved using Newton iteration. The Jacobian required by this procedure is complicated, due in 
part to the introduction of the co-ordinate transformation. We, therefore, developed a preprocess- 
ing package which employed the REDUCE18 algebraic manipulation language to compute 
symbolically the elements of the Jocobian and write the necessary FORTRAN statements 
required by ENTWIFE. This proved to be essential to encode accurately the Jacobian. 

4. RESULTS 

The orthogonal mapping technique was first tested on a viscous flow problem in a fixed domain. 
The flow in a slowly expanding duct was computed using the new mapping technique and 
compared to the results of a series of benchmark computations with the ENTWIFE code using 
standard grid techniques. 32 

The free-surface flow down a perturbed inclined plane described in Section 2 was computed 
using the orthogonal mapping and the finite element techniques discussed in Section 3. A section 
of the orthogonal mesh of the Re = 25.5 computation is shown in Figure 1.  For the purposes of 
illustration, the mesh has been halved in the downstream direction. The result of patching of 
subdomains in the reference domain to obtain local refinement is evident. Note, however, that 1 is 
constant over the entire mesh and is normalized using equation (20) at just one point. The 
corresponding velocity field is shown in Figure 2. Again, only half the number of the computed 

Figure 1. Orthogonal mesh downstream of first bump for R e = 2 5 5  
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. -  . . . _ . _ .  

. . . . . . . . . 

Figure 2. Velocity field downstream of first bump for Re=25.5 computed by ENTWIFE 

velocity vectors are shown. Note that the kinematic boundary condition is accurately satisfied 
even in this highly distorted region. 

Consistent with the experience of Pritchard et ul.', the region of convergence of the Newton 
iteration was found to be very small and care was needed to find a sufficiently accurate initial 
guess for the Newton iteration of converge. Numerical continuation (see. e.g. Reference 4), both 
with respect to the Reynolds number and with respect to the height of the bumps, was performed 
in order to find solutions. At larger Reynolds numbers, fairly small steps were necessary to ensure 
convergence. For example, at a Reynolds number of 25.5, the bed height was increased from zero 
to its full height in 20 discrete steps. Given a sufficiently accurate initial guess, the ultimately 
quadratic convergence of Newton's method was always observed. 

The position of the free surface computed by this method was compared with the experimental 
measurements and FIDAP computations reported by Prichard et ul. The experimental measure- 
ments and the two finite element solutions are shown in Figures 3-6 for four different flow rates. 
Further details of the Re = 20.5 flow are shown in Figures 7 and 8. The norms reported in Table I 
are for the solution on a mesh with 250 elements in the downstream direction and 12 elements in 
the cross-stream direction. 

The computations using the finite element code FIDAP employed Taylor-Hood triangular 
elements with biquadratic velocity and continuous linear pressure interpolation. Continuation in 
the height of the bumps was used to find a solution for a small Reynolds number flow. The other 
flows were then found by continuation in the Reynolds number. The norms reported in Table I are 
for the solution on a mesh with 332 elements in the downstream direction and 16 elements in the 
cross-stream direction. By comparing this solution with a solution computed on a mesh with 
664 x 64 elements, it is believed that the solution on the 332 x 32 element mesh has converged to 
within 1%. A half-parabolic Poiseuille flow was applied at the upstream and downstream 
boundaries, where the depth of the flow was fixed. The velocity field at the element vertices for the 
Re = 25.5 FIDAP computation is plotted in Figure 9, where it can be observed that the spine 
technique has problems satisfying the kinematic boundary condition in regions where the angle 
between the spines and the free surface becomes 'small'. It should be noted, however, that the 
elements are isoparameteric and the approximation to the free surface is piecewise quadratic 
rather than piecewise linear as plotted; hence, the situation is not as bad as it appears from the 
figure. 

The pairwise differences between each of the three free-surface approximations are tabulated in 
Table I. The free-surface positions are compared at the downstream locations at which the 
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Figure 3. Comparison of experimental, FIDAP and ENTWIFE free-surface positions for Re= 12.2, S=3.38 and 
H =0,660: * experimental observation; --- FIDAP computation; ~ ENTWIFE computation. The chained line 

represents the bed, and the solid base line the reference plane 
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Figure 4. Comparison of experimental, FIDAP and ENTWIFE free-surface positions for Re= 16.2, S=2.77 and 
H =0.729: * experimental observation; --- FIDAP' computation; __ ENTWIFE computation. The chained line 

represents the bed, and the solid base line the reference plane 
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Figure 5. Comparison of experimental, FIDAP and ENTWIFE free-surface positions for R e = 2 0 3 ,  S=2.36 and 
H =0792:  experimental observation; --- FIDAP' computation; __ ENTWIFE computation. The chained line 

represents the bed, and the solid base line the reference plane 
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Figure 6. Comparison of experimental, FIDAP and ENTWIFE free-surface positions for R e = 2 5 3 ,  S=2.08 and 
H =0.840: * experimental observation; --- FIDAP' computation; - ENTWIFE computation. The chained line 

represents the bed, and the solid base line the reference plane 
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Figure 7. Details of the Re = 20.5 experimental FIDAP and ENTWIFE free-surface comparison between downstream 

locations 34 and 50: * experimental observations; --- FIDAP' computation; 0 ENTWIFE computation 
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Figure 8. Details of the Re = 20.5 experimental, FIDAP and ENTWIFE free-surface comparison between downstream 
locations 50 and 60: * experimental observations; --- FIDAP' computation; ENTWIFE computation. The chained 

line represents the bed 
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Table I. Comparisons of experimental, FIDAP and ENTWIFE free- 
surface positions 

11 12 1, 

Re= 12.2, S=3.38, ne= 125 
ENTWIFE versus experiment 0.022 0.017 0.038 
FIDAP * versus experiment 0.0 1 3 0.013 0.032 
ENTWIFE versus FIDAP 0014 09086 0.0065 
Re= 16.2, S=2.77, ne= 147 
ENTWIFE versus experiment 0.026 0022 0.034 
FIDAP * versus experiment 0019 0.017 0.029 
ENTWIFE versus FIDAP 0.014 0.0087 0.0095 
Re=202, S=2.36, ne=153 
ENTWIFE versus experiments 0.036 0029 0.046 
FIDAP* versus experiments 0.026 0.023 0.032 
ENTWIFE versus FIDAP 0.0 14 0.0096 0.020 
Re = 255, S = 2.08, ne = 146 
ENTWIFE versus experiments 0.033 0029 0.083 
FIDAP* versus experiments 0.033 0.024 0.050 
ENTWIFE versus FIDAP 0.025 0.0016 0.034 

* The results of all FIDAP computations are reported with the permission of 
Pritchard et al.' 

1255 

Figure 9. Velocity field flow downstream of first bump for Re = 25.5 computed using FIDAP' 
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experimental measurements were made and the different norms are defined as 

where ne is the number of experimental measurements, hZi, hIi  are the heights of the free surface 
above the reference plane at downstream location x i , H  is the asymptotic height of the free 
surface, measured far upstream (or downstream) of the bumps, and wi =0.5(x i+  - x i -  l). 

The lz error between the computations and the experiments is seen to be less than 3% in all 
cases. The l 2  difference between the computations is less than 2% for all Reynolds numbers and 
less than 1% for Reynolds numbers below 20.5. In all four cases the maximum discrepancy 
between the three different free-surface positions occurs where the free-surface height increases 
rapidly after its minimum value between the two bumps. The site of the large maximum error for 
the Re = 25.5 flow is shown in Figure 10. For this flow, the maximum difference between all three 
pairs of free-surface approximations occurs at  a downstream location of x =41.28. 

At Reynolds number 25.5, both computational methods predict a similar structure down- 
stream of the second bump that differs qualitatively from that which is observed in the experi- 
ments. This difference is illustrated in Figure 11. For this and larger Reynolds number flows, 
definite three-dimensional structures were observed in the laboratory experiments by Pritchard 
et al. and the validity of comparing the results of two-dimensional computations with those of 
experiments is increasingly doubtful. 
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Figure 10. Location of maximum error for Re=25-5: 0 experimental observation; 0 FIDAP' computation; 0 

ENTWIFE computation 
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Figure 11. Qualitatively different behaviour between computed and experimental free-surface positions downstream of 
the second bump for Re = 25.5: * experimental observation; --- FIDAP' computation; ~ ENTWIFE computation. 

The chained line represents the bed 

5. CONCLUSIONS 

We have embedded an orthogonal mapping technique into a general-purpose finite element 
package and successfully computed a class of viscous free-surface flows. Comparisons against the 
laboratory experiments and FIDAP computations of Pritchard et al.' are within 3% and 2%, 
respectively, in the l2  norm we have defined. At Reynolds numbers less than 25, the computations 
are within 1 YO of each other. The orthogona1 mapping approach allows an accurate representa- 
tion of the velocity field to be determined in areas of high curvature with greater ease than using 
the spine technique. Further, the use of a symbolic manipulation package such as REDUCE has 
allowed the automatic construction of subroutines to evaluate the higher-order derivatives 
required for computations of singular points by extended system techniques. The numerical 
bifurcation potential of ENTWIFE in the context of free-surface flows is presently being explored. 
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